首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61835篇
  免费   6725篇
  国内免费   4215篇
电工技术   3959篇
技术理论   11篇
综合类   7387篇
化学工业   8014篇
金属工艺   2055篇
机械仪表   3283篇
建筑科学   5063篇
矿业工程   1926篇
能源动力   2235篇
轻工业   4600篇
水利工程   1648篇
石油天然气   2228篇
武器工业   879篇
无线电   5371篇
一般工业技术   7862篇
冶金工业   3028篇
原子能技术   911篇
自动化技术   12315篇
  2024年   150篇
  2023年   1132篇
  2022年   1500篇
  2021年   2011篇
  2020年   2163篇
  2019年   1936篇
  2018年   1964篇
  2017年   2200篇
  2016年   2390篇
  2015年   2364篇
  2014年   3469篇
  2013年   4256篇
  2012年   3974篇
  2011年   4592篇
  2010年   3489篇
  2009年   3574篇
  2008年   3680篇
  2007年   4094篇
  2006年   3665篇
  2005年   3199篇
  2004年   2656篇
  2003年   2244篇
  2002年   1830篇
  2001年   1521篇
  2000年   1236篇
  1999年   1108篇
  1998年   839篇
  1997年   755篇
  1996年   686篇
  1995年   643篇
  1994年   544篇
  1993年   441篇
  1992年   385篇
  1991年   300篇
  1990年   259篇
  1989年   261篇
  1988年   198篇
  1987年   106篇
  1986年   131篇
  1985年   106篇
  1984年   101篇
  1983年   76篇
  1982年   74篇
  1981年   48篇
  1980年   44篇
  1979年   43篇
  1978年   34篇
  1977年   30篇
  1964年   28篇
  1955年   35篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
71.
Controlling the electromechanical response of piezoelectric biological structures including tissues, peptides, and amino acids provides new applications for biocompatible, sustainable materials in electronics and medicine. Here, the piezoelectric effect is revealed in another class of biological materials, with robust longitudinal and shear piezoelectricity measured in single crystals of the transmembrane protein ba3 cytochrome c oxidase from Thermus thermophilus. The experimental findings from piezoresponse force microscopy are substantiated using a range of control measurements and molecular models. The observed longitudinal and shear piezoelectric responses of ≈ 2 and 8 pm V−1, respectively, are comparable to or exceed the performance of commonly used inorganic piezoelectric materials including quartz, aluminum nitride, and zinc oxide. This suggests that transmembrane proteins may provide, in addition to physiological energy transduction, technologically useful piezoelectric material derived entirely from nature. Membrane proteins could extend the range of rationally designed biopiezoelectric materials far beyond the minimalistic peptide motifs currently used in miniaturized energy harvesters, and the finding of robust piezoelectric response in a transmembrane protein also raises fundamental questions regarding the molecular evolution, activation, and role of regulatory proteins in the cellular nanomachinery, indicating that piezoelectricity might be important for fundamental physiological processes.  相似文献   
72.
结合全球倡导的营养导向型农业和功能性食品的内容,首次提出“功能性小麦品种”的概念,将其定义为“含有对人体健康有益的活性成分,可调节人体有益代谢,能给人体健康带来某种益处或满足特定人群的特殊需求,同时可以作为日常食物的口感正常、无毒副作用的小麦品种类型”;结合疫情警示和我国进入后工业时代后,人们需求必将由“吃得饱”、“吃得好”向“吃得健康”转变,因而提出继高产品种、优质品种之后培育“功能性小麦品种”的育种目标。根据多年关于小麦淀粉、蛋白、酯类和其他成分的功能研究结果,介绍新育成的“麦黄酮”、“高色素”、“高抗性淀粉”、“富锌”、“低醇溶蛋白”和“低植酸”等功能性小麦新品种(系)的营养特性和农艺产量状况;根据“健康中国2030”规划等国家战略,进行“功能性品种培育是解决我国功能性食品‘卡脖子’的关键基础,一种功能性品种可以形成一类功能性食品,多种功能性品种可以形成我国功能性面制品产业,推动我国整个食品工业的发展”的前景展望;根据功能性品种及其食品的稳定性和可靠性是产品和市场的“生命线”,从对消费者负责的高度,提出关于“功能性农作物品种审定导向和组建功能性成分检测机构;编制有关功能性品种和食品的国家或行业标准,设立功能性食品和功能性农作物品种的商业标志,保证我国功能性农作物品种及其食品健康发展”等方面的具体建议。  相似文献   
73.
There has been an increasing prevalence of neurodegenerative diseases with the rapid increase in aging societies worldwide. Biomarkers that can be used to detect pathological changes before the development of severe neuronal loss and consequently facilitate early intervention with disease-modifying therapeutic modalities are therefore urgently needed. Diffusion magnetic resonance imaging (MRI) is a promising tool that can be used to infer microstructural characteristics of the brain, such as microstructural integrity and complexity, as well as axonal density, order, and myelination, through the utilization of water molecules that are diffused within the tissue, with displacement at the micron scale. Diffusion tensor imaging is the most commonly used diffusion MRI technique to assess the pathophysiology of neurodegenerative diseases. However, diffusion tensor imaging has several limitations, and new technologies, including neurite orientation dispersion and density imaging, diffusion kurtosis imaging, and free-water imaging, have been recently developed as approaches to overcome these constraints. This review provides an overview of these technologies and their potential as biomarkers for the early diagnosis and disease progression of major neurodegenerative diseases.  相似文献   
74.
Orthorhombic-structured CaIn2O4 ceramics with a space group Pca21 were synthesized via a solid-state reaction method. A high relative density (95.6 %) and excellent microwave dielectric properties (εr ~11.28, Qf = 74,200 GHz, τf ~ ?4.6 ppm/°C) were obtained when the ceramics were sintered at 1375 °C for 6 h. The dielectric properties were investigated on the basis of the Phillips–Van Vechten–Levine chemical bond theory. Results indicated that the dielectric properties were mainly determined by the InO bonds in the CaIn2O4 ceramics. These bonds contributed more (74.65 %) to the dielectric constant than the CaO bonds (25.35 %). Furthermore, the intrinsic dielectric properties of the CaIn2O4 ceramics were investigated via infrared reflectivity spectroscopy. The extrapolated microwave dielectric properties were εr ~10.12 and Qf = 112,200 GHz. Results indicated that ion polarization is the main contributor to the dielectric constant in microwave frequency ranges.  相似文献   
75.
Beyond the catalytic activity of nanocatalysts, the support with architectural design and explicit boundary could also promote the overall performance through improving the diffusion process, highlighting additional support for the morphology-dependent activity. To delineate this, herein, a novel mazelike-reactor framework, namely multi-voids mesoporous silica sphere (MVmSiO2), is carved through a top-down approach by endowing core-shell porosity premade Stöber SiO2 spheres. The precisely-engineered MVmSiO2 with peripheral one-dimensional pores in the shell and interconnecting compartmented voids in the core region is simulated to prove combined hierarchical and structural superiority over its analogous counterparts. Supported with CuZn-based alloys, mazelike MVmSiO2 nanoreactor experimentally demonstrated its expected workability in model gas-phase CO2 hydrogenation reaction where enhanced CO2 activity, good methanol yield, and more importantly, a prolonged stable performance are realized. While tuning the nanoreactor composition besides morphology optimization could further increase the catalytic performance, it is accentuated that the morphological architecture of support further boosts the reaction performance apart from comprehensive compositional optimization. In addition to the found morphological restraints and size-confinement effects imposed by MVmSiO2, active sites of catalysts are also investigated by exploring the size difference of the confined CuZn alloy nanoparticles in CO2 hydrogenation employing both in-situ experimental characterizations and density functional theory calculations.  相似文献   
76.
Measuring cognitive load is important in virtual learning environments (VLE). Thus, valid and reliable measures of cognitive load are important to support instructional design in VLE. Through three studies, we investigated the validity and reliability of Leppink's Cognitive Load Scale (CLS) and developed the extraneous cognitive load (EL) dimension into three sub-scales relevant for VLE: EL instructions, EL interaction, and EL environment. We investigated the validity of the measures using the Partial Credit Model (PCM), Confirmatory Factor Analysis (CFA), and correlations with retention tests. Study 1 (n = 73) investigated the adapted version of the CLS. Study 2 describes the development and validation of the Multidimensional Cognitive Load Scale for Virtual Environments (MCLSVE), with 140 students in higher education. Study 3 tested the generalizability of the results with 121 higher education students in a more complicated VLE. The results provide initial evidence for the validity and reliability of the MCLSVE.  相似文献   
77.
78.
To predict the nonlinear stress-strain behavior and the rupture strength of orthotropic ceramic matrix composites (CMCs) under macroscopic plane stress, a concise damage-based mechanical theory including a new constitutive model and two kinds of failure criteria was developed in the framework of continuum damage mechanics (CDM). The damage constitutive model was established using strain partitioning and damage decoupling methods. Meanwhile, the failure criteria were formulated in terms of damage energy release rate (DERR) in order to correlate the failure property of CMCs with damage driving forces, and the maximum DERR criterion and the interactive DERR criterion were suggested simultaneously. For the sake of model evaluation, the theory was applied to a typical CMC with damageable and nonlinear behavior, that is, 2D-C/SiC. The damage evolution law, strain response and rupture strength under incremental cyclic tension along both on-axis and off-axis directions were completely investigated. Comparison between theoretical predictions and experimental data illustrates that the newly developed mechanical theory is potential to give reasonable and accurate results of both stress-strain response and failure property for orthotropic CMCs.  相似文献   
79.
Equilibrium swelling and rheological tests were adopted to systematically investigate the effects of softener type and dosage on the crosslink densities. The results turned out that the chemical crosslink density could be distinguished from the physical crosslink density by comparing the results of equilibrium swelling and rheological tests. The liquid butadiene (LB) as a softener leads to the greatest reduction in crosslink density, followed by polyethylene wax (PW) and paraffinic oil (PO). The tensile strength decreases with increasing PO content while shows peak values with increase of LB and PW contents. The dependencies of chemical crosslink density on the aging time under 150°C are quite different for the three softeners, which can be expected from the double crosslinking networks consisting of small softener and large main crosslinking networks. Further investigation has been performed to correlate the tensile strength with chemical crosslink density of ethylene propylene diene monomer elastomer vulcanizates. Three different linear relationships can be obtained for the softeners independent of the aging time. It can now be expected from this study that the role of some new softeners in rubber compounds is not only confined to plasticization but also forms crosslinking networks in the peroxide-cured rubbers.  相似文献   
80.
Nd3+ doped strontium fluorophosphate (S-FAP), with chemical formula Sr5(PO4)3F, nanopowders were prepared using the co-precipitation method. The prepared powders had no impurity phase with a grain size of about 30 nm and the doping limit of Nd3+ ions in strontium fluorophosphate is about 9 at.%. The morphology and particle size were determined by the doping concentration of Nd3+. Anisotropic Nd: S-FAP transparent ceramics with different Nd3+ doping concentrations were fabricated successfully by the simple hot-pressing method. The grain size of prepared S-FAP transparent ceramics decreased first and then increased with the increase of Nd3+ concentration. The 2 at.% Nd: S-FAP ceramic presented the highest optical transmittance at all wavelengths range. The characteristic transitions from the ground state to the excited states of Nd3+ ions were observed from the absorption spectra, and the absorption cross-section was calculated at 3.71 × 10–20 cm2. The influence of Nd3+ ion concentration on luminescence intensity and fluorescence lifetime was studied under 796 nm excitation. The strong emission of 4F3/24I9/2 transition in Nd: S-FAP was calculated by Judd–Ofelt (J-O) theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号